“Feel the Clinical Freedom on Science and Safety”

Founded in 1999, Purgo Biologics strives to become one of the leading global companies in oral health care with its focus on safe biomaterials for soft tissue and bone regeneration. Based on the specialized experience accumulated by our outstanding research personnel, Purgo Research and Development Center based in Seongnam-si is thriving to become the best in the world, specifically in the expertise of oral biomaterials for soft tissue and bone regeneration.

All members in Research and Development Center are pursuing the optimized technical developments with various clinical studies, cooperative research with the governments, clinicians and educational institutions.

The solutions manufactured by Purgo are gaining fame throughout the world and Purgo’s solutions are widely accepted by global dentists from more than 30 countries.

Our production site is complying with the most international quality standards and regularly inspected by international agencies. Each production stage of our biologics solutions are controlled from the selection of the raw material to the final product.

Availability of words may vary from country to country.
We had a desire. A desire to provide Valuable & Worthwhile products for our family. That’s why we are here to let them smile shine and brightly again.

Purgo Biologics
THE Graft™ is a natural, porous bone mineral matrix. It is produced by removal of all organic components from porcine bone. Due to its natural structure the anorganic bone mineral of THE Graft™ likens physical and chemical aspects of mineralized matrix of human bone. When packed into a bone defect, THE Graft™ gradually resorbs and replaced with bone during the healing process. It is available in cancellous granules packaged in vial. THE Graft™ is sterilized using gamma irradiation.

Unique proprietary manufacturing process removes very effectively potential immunogenic organic elements keeping the natural structure of the matrix.

THE Graft™ quality and safety have been scientifically demonstrated with in-vitro, in-vivo studies, large case study reports and international randomized clinical research. Systematic review and meta-analysis are conducted on THE Graft™ worldwide. [1-2]

THE Graft™ has established its fame throughout the world, both scientifically and clinically, becoming the popular bone regeneration material.

Indications

<table>
<thead>
<tr>
<th>Bone replacement materials</th>
<th>GR/CC</th>
<th>Preserved extraction socket</th>
<th>Defect extraction socket</th>
<th>Minor bone augmentation</th>
<th>Major bone augmentation</th>
<th>Sinus floor elevation</th>
<th>Peri-implantitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE Graft™ Granules 0.25-1mm</td>
<td>0.25g~0.6cc</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>THE Graft™ Granules 0.25-1mm</td>
<td>0.50g~1.2cc</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>THE Graft™ Granules 0.25-1mm</td>
<td>1.00g~2.4cc</td>
<td>•</td>
<td></td>
<td>•</td>
<td>•</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>THE Graft™ Granules 1-2mm</td>
<td>0.50g~1.8cc</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>THE Graft™ Granules 1-2mm</td>
<td>1.00g~3.6cc</td>
<td>•</td>
<td></td>
<td>•</td>
<td></td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Description</th>
<th>Item No.</th>
<th>Size / Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE Graft (S*) Granule 0.25 - 1.00mm</td>
<td>BG-A25</td>
<td>0.60cc</td>
</tr>
<tr>
<td></td>
<td>TG-A525</td>
<td>0.25cc</td>
</tr>
<tr>
<td></td>
<td>BG-A05</td>
<td>1.20cc</td>
</tr>
<tr>
<td></td>
<td>TG-A505</td>
<td>0.50cc</td>
</tr>
<tr>
<td></td>
<td>BG-A10</td>
<td>2.40cc</td>
</tr>
<tr>
<td></td>
<td>TG-A510</td>
<td>1.00cc</td>
</tr>
<tr>
<td></td>
<td>BG-A20</td>
<td>4.80cc</td>
</tr>
<tr>
<td>THE Graft (L*) Granule 1.00 - 2.00mm</td>
<td>BG-B05</td>
<td>1.80cc</td>
</tr>
<tr>
<td></td>
<td>TG-B505</td>
<td>0.50cc</td>
</tr>
<tr>
<td></td>
<td>BG-B10</td>
<td>3.60cc</td>
</tr>
<tr>
<td></td>
<td>TG-B510</td>
<td>1.00cc</td>
</tr>
</tbody>
</table>

*S: small / L: large
**Syringe packaging is CE pending
THE Graft™ Purity

Is THE Graft™ safety material?

Proprietary virus inactivation process technology. Thanks to highly efficient manufacturing process, THE Graft™ is free from any organic components that might be potential causes of infection or immune reaction. This unique process preserves most of the physical properties of the native porcine osseous structure of THE Graft™. A large surface area is a key requirement for graft materials, and not only results in a larger surface region available for osteoblast cells attachment but also facilitates the exchange of nutrients and waste products, it allows greater amounts of blood, proteins, and growth factors to be absorbed onto the scaffold.

THE Graft™ has a high purity. The analysis result minimal residual protein, soft tissue, and organic bone matrix, proves that THE Graft™ is deproteinized enough for safe use.

Other than THE Graft™, such lower values for organic residues are only found with bone graft material treated at high temperatures which may cause the detriment of the natural bone structure.

These results show that organic substances, including collagen and other organic compounds, were successfully removed from THE Graft™, which is thus not affected by issues associated with organic content. [3]

Is porcine bone safer than bovine?

THE Graft™ demonstrated a protein content lower than that of the natural bovine bone graft material. Bovine cancellous bone is Not Free of Zoonoses, such as BSE-Bovine Spongiform Encephalopathy. Porcine bone has a relatively low risk of zoonosis.

Less residual organic content for high purity

High purity means low organic matters

- High Surface Energy
- High Hydrophilicity
THE Graft™ Biocompatibility [3-4-5]

« Getting closer to human bone »

The Graft™ is structurally similar to human bone. It has high possible level of porosity combined with a natural interconnectivity.

Safe & Biocompatible

The combination of porcine origin with the high level of purity enables predictable bone growth without risking an immunogenic reaction. The high biocompatibility of THE Graft™ has been confirmed by an in-vitro cell study. THE Graft™ therefore encourages cell adhesion to the same extent as the established natural DBBM and offers optimal conditions for vital cell growth.

Porosity is an important factor in determining tissue-implant material integration. High porosity leads to a quicker absorption of liquids and cells spreading. THE Graft™ provides the optimized bone architecture for adhesion and tissue regeneration.

THE Graft™ High Porosity [3-4-5-6]

High porosity and early remodeling improve clinical performance.

The High porosity of THE Graft™ means a quicker absorption of liquides (e.g: blood) in comparison with DBBM. This not only facilitates the application of the material but also leads to a quicker post-implantation incorporation.

High level of porosity was demonstrated with particle pore structure test, particle size distribution test and total porosity tests.

THE Graft™ Structure:

1. Macropores (diameter > 100 μm), are necessary to form blood vessels and induce both bone growth and reorganization around the graft material.

2. Micropores (diameter <10 μm), are required for the penetration of body fluids, ion transportation, the attachment of osteoblasts, and the precipitation of newly formed HA.

3. Nanopores, composed of sub-100-nm grains with a large amount of nanoscale pores present between the grains contrast.

Global porosity analysis:

- Human trabecular bone (~79.3%)
- THE Graft™ ~ 78.4%

THE Graft™ Hydrophilicity [3]

THE Graft™ consists of a unique inter-connection pore system that ensures an efficient fluid intake and permits the migration of cells. This pore system and high surface energy enhance the osteoconduction process.

The SSA of THE Graft™ was significantly larger than the values measured for the bovine bone. Considering that both THE Graft™ and the bovine bone had a different surface morphology and pore size distribution with a substantial amount of nanoscale pores, we believe that this difference in the SSA was closely related to the nano/microscale structure of the bone graft materials.

The wettability of THE Graft™ turned out to be higher than compared existing xenografts, which suggests that THE Graft™ is relatively hydrophilic and can be easily wet by body fluids after implantation. Not only protein adsorption, but also the attachment, growth, and proliferation of various types of cells, including osteoblasts, have been reported to be significantly affected by the wettability of the material surface.

This high wettability of THE Graft™ suggests that it may have advantages in terms of protein adsorption and the resulting cell adhesion and proliferation processes after implantation. The content of the organic component of THE Graft™ was somewhat lower than compared existing xenografts.